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LElTER TO THE EDITOR 

Bond percolation and the Yang-Lee edge singularity 
problems in three dimensions 

Jeffrey S Reeve 
Department of Mathematics, University of Newcastle, NSW 2308, Australia 

Received 21 June 1982 

Abstract. Field theories with a trilinear interaction are used to describe both the random 
bond percolation problem and the Yang-Lee edge singularity problems in three dimensions 
at criticality. Renormalisation group functions are calculated to order four for the 
exponents 7, o and the beta function, and to order five for the remaining critical exponents. 
Estimations of the critical coupling constant and the exponents for percolation theory 
are found by summing conformal transformations of the Bore1 transformed series. 

All the quantities of interest in the random bond problem on a lattice are attainable 
from the Potts model in which the number of states S per site is 1. To calculate, for 
instance, the probability that two bonds belong to the same cluster, one calculates 
the spin-spin correlation function for the Potts model with general S and then 
specialises with S = 1. Essam (1980) has reviewed the random percolation problems 
and their connection with the Potts model and the interested reader is referred to 
that article. It is now well established (Zia and Wallace 1975, Priest and Lubensky 
1976, Amit 1976) that the Potts model may be written in terms of a Euclidean field 
theory with a trilinear interaction, at least near the critical region. Certain global 
properties of the 4 theory have been investigated in the renormalisation group 
context by Zia and Wallace and recently the critical exponents of the theory were 
calculated to order three in the E expansion, where E = d,  - d and the critical dimension 
d ,  = 6 (de Alcantara Bonfim et a1 1980,1981). Also Houghton et a1 (1978) confirmed 
the validity of the 4 3  field theory in the percolation limit and analysed the high-order 
behaviour of the correlation functions near the critical dimension for the massless case. 

The particular model we consider here has the Hamiltonian 

For the Potts problem dijk is a tensor represented by 

where the n + 1 vectors e r  (a = 1,2, .  . . , n + 1) of II components (i = 1,2, .  . . , n) 
satisfy 

n + l  C e S = O ,  
u = l  

(3) 
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a = l  

All the correlation functions of interest are first calculated for general n and only 
then do we put n = 0 to obtain their values for the percolation problem unambiguously. 

Another situation described by the same field theory is the Yang-Lee problem in 
which the density a ( H )  of zeros of the partition function of the Ising model are 
located on the imaginary magnetic field axis and 

B(H)-IH-Hol" (6) 

as H + the critical field Ho. Fisher (1978) has shown that (T = 1/S is a critical exponent 
of a one-component r p 3  theory when dll l  = 1 and A is pure imaginary. The critical 
exponent p = 1 for the Yang-Lee problem in all dimensions (de Alcantara Bonfim et 
a1 1980). 

In this letter we present a calculation in the context of renormalised perturbation 
theory of the beta function and critical exponents explicitly in three dimensions. This 
extends by a further two loops the work presented in Reeve et a1 (1982) in which at 
least encouraging, if not accurate, results were reported. Some minor numerical 
misprints and errors in that paper are corrected in the results that follow. 

In order to remove the cut-off dependence and so to isolate the universal quantities 
(namely the critical exponents), the field theory defined in (1) by the Hamiltonian 2 
is renormalised using the following usual conventions (Amit 1978): 

(7a 1 

(7b) 

(7c 1 

ZJ'~)(~ = 0, mo, A )  = rF(4 = 0, m, g )  = m z ,  

2:'' P3)(qi = 0, mo, A )  = rA3)(qi = 0, m, g )  = g, 

Z42r(2*1)(4i = 0, p = 0, mo, A )  = r R '  (4i = 0, p = 0, m, g )  = I, (2 1) 

where 2;1/2 is the wavefunction normalisation and m and g are respectively the 
renormalised mass and coupling constant. The function &z renders finite the vertex 
function with a mass operator insertion. 

In terms of the dimensionless coupling constants U = m-="g and uo = m-"/'A the 
Callan-Symanzik equation 

[m a/am + p (U) a/au - &4 (U )]rLN)(4,, m, U )  = (2 - 'ym (u ) )m rR' (4i = 0, p = 0, m, U )  
(8) 

expresses the independence of the unrenormalised vertex function from the particular 
normalisation point. 

Assuming that the right-hand side of (8) is negligible (Amit 1976, Hubbard 1973) 
in the limit as p i / m  + 00, the exponent 77 is given by 

2 N 1  

77 = ~ ~ ( u * ) = p ( U ) a l n Z ~ / a u I , = , *  (9) 

p(u*)=&(aln u ~ / ~ u ) - ' ~ , = , ~ = o .  (10) 

where U* is such that 
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In addition, the critical exponent v is determined by 

2 - 7 - v - l =  Y . + ~ ( U * )  = -@(U) a In Z.+z/au I,=,,*. (11) 

0 =ap(u)/auI,,,*. (12) 

Also of interest is Wegner's correction-to-scaling exponent (Wegner 1972) 

Details of the method of calculation of the unrenormalised correlation functions 
are given in Reeve et a1 (1982). The evaluation of the Feynman integrals was made 
possible only by knowing the results for all one-loop diagrams as functions of the 
external momenta and internal masses (Nickel 1978). 

The renormalisation group functions are then, for the percolation problem, 

@(U) = - 1 . 5 ~  + 1 . 3 1 2 5 ~ ~ -  1 . 4 0 7 1 1 8 ~ ~ + 2 . 9 8 3 0 1 ~ ~ - 7 . 4 8 2 ~ ~ + .  . . , 
Y+(u) = - 0 . 1 2 5 ~ ~ + 0 . 0 6 1 9 2 1 ~ ~ - 0 . 0 1 6 7 0 1 ~ ~ + 0 . 3 9 6 3 ~ * + .  . . , 
T . + ~ ( u )  = 0 . 7 5 ~ ~  -0.604166u4+ 1 . 0 9 2 2 8 ~ ~  - 2 . 8 3 5 4 7 ~ ~ + 9 . 1 0 2 ~ " + .  . . , 

(13a) 

(13b) 

(13c) 

+1 .46708~ ' -4 .738~~ '+ .  . . , ( 1 3 4  

P ( u )  - 1 . 5 ~  + 0 . 5 6 2 5 ~ ~ - 0 . 2 7 4 0 1 6 ~ ' + 0 . 2 4 7 4 1 9 ~ ~ - 0 . 2 4 7 1 ~ ~ + .  . . , (14a) 
Y.+(u)  = -0 .125~~+0 .025655~~-0 .001677~~+  0.0133u8+. . . , 

Y-'(u)  = 1 - 0 . 3 7 5 ~ * +  0 . 3 2 5 5 2 1 ~ ~ - 0 . 5 7 8 0 9 6 ~ ~  

and for the Yang-Lee edge singularity problem 

(14b) 

( 1 4 ~ )  

( 1 4 4  

T.+z(u) = 0 . 7 5 ~ ~  -O.3125u4+0.249934u6- 0 . 2 6 7 0 6 1 ~ ' + 0 . 3 3 3 2 ~ ~ ~ + .  . . , 
Y-'(u) = 1 - 0 . 3 7 5 ~ ~  + 0 . 1 7 9 6 8 8 ~ ~  - 0 . 1 4 1 0 0 8 ~ ~  + 0.144963~~--0 .1801~' '  + . . , . 

The function 

Y - ' ( U )  = l-T.+4U)/(2--Y+(U)) (15) 
and the exponent y is y(u*) .  

been shown (Houghton et a1 1978), @(U) has an asymptotic expansion of the form 
We concentrate now on the analysis of the percolation problem. As has already 

~ ( u ) - c  (-a)'r(i+b/2)u2'+' (16) 
1 

for large 1. To sum the series P ( u ) / u  we first form the Borel transform by dividing 
each term of the series by r(l+b/2). The Borel transform then undergoes a conformal 
transformation defined by 

A = [(I + u u ~ ) " ~ -  1]/[(1 + u u ~ ) " ~  + 11 
which gives an expansion convergent in the entire U' cut plane. The integral rep- 
resentations of the r(l + b/2) factors are then used to recover the original series. This 
follows identically the method of le Guillou and Zinn-Justin (1977, 1980), as used 
to analyse similar series for the #4, O(n) model (Baker et a1 1976a, b). 

Unfortunately we have been unable as yet to solve the instanton equation of 
Houghton et a1 (1978) needed to find an accurate value of U for our series. Instead 
we have estimated that a = 0.49 f 0.05 by fitting the bare Green function to the form 
C ZI u2'u'I'(l ++) and using a ratio test. 
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The results of the analysis to various orders are given in table 1, from which we 
estimate 

w = 1.99rt0.04, 

+,,j2 = 0.909~0.010, 

7 = -0.131 *0.001, 

y = 1.74*0.015, 

where the error estimates are not absolute, but simply reflect the variation in the fixed 
point U* with U .  The results (17) were all obtained independently and agree extremely 
well with the relation (15) and direct series estimates (Essam 1980). Unfortunately 
the Yang-Lee problem gave wildly inconsistent results when analysed by this method, 
as did both the Yang-Lee and percolation problems when analysed using the Pad& 
Bore1 method. 

Table 1. Location of the fixed point and values of the critical exponents for successive 
orders of approximation for a = 0.49. 

~ ~~~ 

- 1  Function U *  W 17 7” Y 

Order 4 2.870 1.21 -0.151 0.846 0.597 
5 2.495 1.99 -0.131 0.894 0.581 
6 0.909 0.575 

The author is very grateful to Dr A J Guttmann for programming many of the integrals 
involved in this calculation. He would also like to thank the Australian Research 
Grants Committee for financial support. 
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